Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.791
Filtrar
1.
Environ Microbiol ; 26(4): e16617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558266

RESUMEN

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.


Asunto(s)
Cubierta de Hielo , Microbiota , Cubierta de Hielo/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Regiones Árticas
2.
PeerJ ; 12: e17157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560453

RESUMEN

Background: Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods: Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results: The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.


Asunto(s)
Antiinfecciosos , Miel , Microbiota , Humanos , Abejas/genética , Animales , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética
3.
Front Cell Infect Microbiol ; 14: 1360438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562961

RESUMEN

Background: The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods: Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results: Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion: Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.


Asunto(s)
Aedes , Wolbachia , Animales , Humanos , Aedes/microbiología , Wolbachia/genética , Filipinas , ARN Ribosómico 16S/genética , Mosquitos Vectores , Filogenia
4.
Artículo en Inglés | MEDLINE | ID: mdl-38563675

RESUMEN

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Asunto(s)
Flavobacterium , Salmo salar , Animales , Flavobacterium/genética , Chile , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
5.
Sci Rep ; 14(1): 7786, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565581

RESUMEN

In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.


Asunto(s)
Microbiota , Esclerosis Múltiple , Humanos , Proyectos Piloto , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Microbiota/genética , Bacterias/genética , Inflamación
6.
Artículo en Inglés | MEDLINE | ID: mdl-38573081

RESUMEN

The prokaryotic generic name Shuttleworthia Downes et al. 2002 is illegitimate because it is a later homonym of the plant genus Shuttleworthia Meisner 1840 and the mollusk genus Shuttleworthia Baker 1941 (Principle 2 and Rule 51b(5) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic name Shuttleworthella, with type species Shuttleworthella satelles comb. nov. The prokaryotic generic name Tetrasphaera Maszenan et al. 2000 is illegitimate because it is a later homonym of Tetrasphaera Popofsky 1913 (Protozoa, Radiolaria) and of Tetrasphaera Górka 1965 (a fossil dinoflagellate) (Rule 51b(4) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic name Nostocoides, with type species Nostocoides japonicum comb. nov.


Asunto(s)
Actinomycetales , Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Clostridiales
7.
Artículo en Inglés | MEDLINE | ID: mdl-38573076

RESUMEN

An aerobic, non-motile, Gram-stain-positive bacterium, designated strain NEAU-Y5T, was isolated from a soil sample collected from Northeast Agricultural University, Heilongjiang province. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-Y5T belonged to the genus and showed high 16S rRNA sequence similarity to Isoptericola variabilis (98.9 %), Isoptericola nanjingensis (98.9 %), Isoptericola cucumis (98.5 %), Isoptericola hypogeus (98.5 %), Isoptericola dokdonensis (98.5 %), Isoptericola jiangsuensis (98.3 %), and Isoptericola halalbus (98.1 %), followed by other members of the genus Isoptericola (<98 %), and phylogenetically clustered with I. dokdonensis and I. jiangsuensis. Strain NEAU-Y5T was found to grow at 4-40 °C (optimum, 28 °C), pH 6.0-12.0 (optimum, pH 7.0), and tolerated 0-6 % NaCl (w/v). The cell-wall peptidoglycan type was l-Lys-d-Asp. The whole-cell hydrolysates contained glucose, galactose, and ribose. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, and glucosamine unknown phospholipid. Major fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. The predominant menaquinone was MK-9(H4). The DNA G+C content was 73.4 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between strain NEAU-Y5T and the type strains of the genus Isoptericola ranged from 18.6 to 23.5 % and from 77.3 to 81.6 %, respectively. Based on morphological, physiological, chemotaxonomic, and phylogenetic data, as well as digital DNA-DNA hybridization and average nucleotide identity values, the novel strain NEAU-Y5T could be differentiated from its closest relatives. Therefore, the strain represents a novel species of the genus Isoptericola, for which the name Isoptericola luteus sp. nov. is proposed. The type strain is NEAU-Y5T (=CCTCC AA 2019087T=DSM 110637T).


Asunto(s)
Actinomycetales , Suelo , Humanos , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias , Nucleótidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38573102

RESUMEN

A novel Gram-positive strain, B1T, was isolated from uranium-contaminated soil. The strain was aerobic, rod-shaped, spore-forming, and motile. The strain was able to grow at 20-45 °C, at pH 6.0-9.0, and in the presence of 0-3 % (w/v) NaCl. The complete genome size of the novel strain was 3 853 322 bp. The genomic DNA G+C content was 45.5 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain B1T has the highest similarity to Aneurinibacillus soli CB4T (96. 71 %). However, the novel strain showed an average nucleotide identity value of 89.02 % and a digital DNA-DNA hybridization value of 37.40 % with strain CB4T based on the genome sequences. The major fatty acids were iso-C15 : 0 and C16 : 0. The predominate respiratory quinone was MK7. Diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and an unidentified lipid were identified as the major polar lipids. The phylogenetic, phenotypic, and chemotaxonomic analyses showed that strain B1T represents a novel species of the genus Aneurinibacillus, for which the name Aneurinibacillus uraniidurans sp. nov. is proposed. The type strain is B1T (=GDMCC 1.4080T=JCM 36228T). Experiments have shown that strain B1T demonstrates uranium tolerance.


Asunto(s)
Ácidos Grasos , Uranio , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias , Suelo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38573743

RESUMEN

Facultatively anaerobic bacterial strains were isolated from samples of a methanogenic reactor and, based on 16S rRNA gene sequences, found to be affiliated with the family Propionibacteriaceae in the phylum Actinomycetota. Four strains with almost-identical 16S rRNA gene sequences were comprehensively characterized. The most closely related species to the strains was Brooklawnia cerclae BL-34T (96.4 % sequence similarity). Although most of the phenotypic characteristics of the four strains were identical, distinct differences in some cellular and physiological properties were also detected. Cells of the strains were Gram-stain-positive, non-spore-forming, pleomorphic rods. The strains utilized carbohydrates and organic acids. The strains produced acetate, propionate and lactate from glucose, but the molar ratios of the products were variable depending on the strains. The strains grew at 10-40 °C (optimum at 35 °C) and pH 5.3-8.8 (optimum at pH 6.8-7.5.) The major cellular fatty acids of the strains were anteiso-C15 : 0, C15 : 0 and C15 : 0 dimethylacetal (as a summed feature). The major respiratory quinone was menaquinone MK-9(H4) and the diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The genome size of the type strain (SH051T) was 3.21 Mb and the genome DNA G+C content was 65.7 mol%. Genes responsible for propionate production through the Wood-Werkman pathway were detected in the genome of strain SH051T. Based on the results of phylogenetic, genomic and phenotypic analyses of the novel strains, the name Brooklawnia propionicigenes sp. nov. is proposed to accommodate the four strains. The type strain of the novel species is SH051T (=NBRC 116195T=DSM 116141T).


Asunto(s)
Propionatos , Propionibacteriaceae , Bovinos , Animales , Anaerobiosis , Granjas , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias Anaerobias
10.
Artículo en Inglés | MEDLINE | ID: mdl-38591772

RESUMEN

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Asunto(s)
Agaricales , Saccharomycetales , Filogenia , ADN Espaciador Ribosómico/genética , Agaricales/genética , Trametes/genética , Análisis de Secuencia de ADN , Composición de Base , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Saccharomycetales/genética , ADN de Hongos/genética , Técnicas de Tipificación Micológica
11.
Artículo en Inglés | MEDLINE | ID: mdl-38591773

RESUMEN

Four yeast strains, representing a novel anamorphic species, were isolated in Thailand. The two strains (ST-3660T and ST-3647) were obtained from two different estuarine water samples in a mangrove forest. Strain DMKU-FW1-37 was derived from a grease sample, and another strain (TSU57) was isolated from a fruiting body of Phallus sp. Pairwise sequence analysis showed that the four strains had identical or differed by only one nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene, and differed by one to three nucleotide substitutions in the internal transcribed spacer (ITS) regions. Savitreea pentosicarens is the most closely related species to the four strains, but with 9-10 (1.57-1.72 %) nucleotide substitutions in the D1/D2 domains of the LSU rRNA gene and 29-31 (4.22-4.45 %) nucleotide substitutions in the ITS regions. Phylogenetic analyses based on the concatenated sequences of the ITS regions and the D1/D2 domains of the LSU rRNA gene showed that the four strains form a well-separated lineage from S. pentosicarens with high bootstrap support, confirming that they represent a distinct species. Therefore, the four strains are assigned as representives of a novel species of the genus Savitreea, for which the name Savitreea siamensis sp. nov. is proposed. The holotype is TBRC 4481T and the ex-type is PYCC 9794T (=ST-3660T). The MycoBank number of the novel species is MB 851951.


Asunto(s)
Ácidos Grasos , Saccharomycetales , Filogenia , ADN Espaciador Ribosómico/genética , Tailandia , Análisis de Secuencia de ADN , ADN de Hongos/genética , Técnicas de Tipificación Micológica , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Nucleótidos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38591775

RESUMEN

A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75T, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75T occurred at 10-45 °C (optimum, 37 °C), pH 6.5-9.0 (optimum, pH 8.0) and 0.5-18.0 % NaCl concentrations (optimum, 2.5 %). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75T is affiliated with the genus Marinobacter. Strain ASW11-75T showed highest 16S rRNA gene sequence similarity to 'Marinobacter arenosus' CAU 1620T (98.5 %). The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-75T and its closely related strains (Marinobacter salarius R9SW1T, Marinobacter similis A3d10T, 'Marinobacter arenosus' CAU 1620T, Marinobacter sediminum R65T, Marinobacter salinus Hb8T, Marinobacter alexandrii LZ-8T and Marinobacter nauticus ATCC 49840T) were 19.8-24.5 % and 76.6-80.7 %, respectively. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω9c and C16 : 0 N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2 mol%. Based on genomic and gene function analysis, strain ASW11-75T had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75T represents a novel Marinobacter species, for which the name Marinobacter qingdaonensis sp. nov. with the type strain ASW11-75T is proposed. The type strain is ASW11-75T (=KCTC 82497T=MCCC 1K05587T).


Asunto(s)
Ácidos Grasos , Marinobacter , Ácidos Grasos/química , Fosfolípidos/química , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
13.
World J Microbiol Biotechnol ; 40(5): 157, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592517

RESUMEN

This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.


Asunto(s)
Queso , Animales , Bovinos , Femenino , ARN Ribosómico 16S/genética , Temperatura , Electroforesis , Cabras , Saccharomyces cerevisiae
14.
J Agric Food Chem ; 72(14): 7774-7783, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563445

RESUMEN

Pathogenic microorganisms can impact the behavior and physiology of herbivores by direct or indirect means. This study demonstrated that yellow peach moth Conogethes punctiferalis larvae feeding on Penicillium-infected apples exhibited significantly longer body length and weight parameters compared to the control group. The sequencing of gut 16S rRNA showed a significant increase in the diversity and abundance of bacteria in the larvae feeding on Penicillium-infected apples. Additionally, transcriptomic sequencing of the larval gut indicated significant upregulation of genes related to digestion and cuticle formation after consuming Penicillium-infected apples. Furthermore, enzyme activity assays revealed notable changes in the trypsin and lipase activity. Consequently, these alterations in gut microbiota structure, diversity, and gene expression levels may underlie the observed growth and developmental variations in C. punctiferalis larvae mediated by pathogenic microorganisms. This study holds theoretical significance for a deeper understanding of the tripartite interaction among microorganisms, insects, and plants as well as for the development of novel pest control measures based on gut microbiota.


Asunto(s)
Malus , Mariposas Nocturnas , Animales , Malus/genética , ARN Ribosómico 16S/genética , Larva , Bacterias/genética , Expresión Génica
15.
Nat Commun ; 15(1): 3004, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589361

RESUMEN

The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.


Asunto(s)
Microbioma Gastrointestinal , Lactante , Masculino , Adulto , Femenino , Humanos , Niño , Anciano , Recién Nacido , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Multiómica , Metaboloma , Heces/microbiología , Madres
16.
Front Immunol ; 15: 1347676, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590519

RESUMEN

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Asunto(s)
Gripe Humana , Probióticos , Ratones , Animales , Humanos , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos Volátiles , Butiratos , Faecalibacterium/genética
17.
BMC Pregnancy Childbirth ; 24(1): 226, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561737

RESUMEN

AIM: To investigate the differences in gut microbiota composition among nonpregnant women of reproductive age, healthy pregnant women, and gestational diabetes (GD) patients. METHODS: A total of 45 outpatients were enrolled and divided into three groups: nonpregnant women of reproductive age (control group, n = 23), healthy pregnant women (normal group, n = 10), and GD patients (GD group, n = 12). Faecal samples were collected and sequenced using 16S rRNA gene sequencing to analyse the microbial composition. RESULTS: (1) Pregnant patients exhibited an increase in the abundance of Streptococcus (Pnormal = 0.01286, PGD = 0.002965) and Blautia (Pnormal = 0.0003924, PGD = 0.000246) but a decrease in the abundance of Roseburia (Pnormal = 0.0361, PGD = 0.007075), Phascolarctobacterium (Pnormal = 0.0003906, PGD = 0.02499) and Lachnoclostridium (Pnormal = 0.0003906, PGD = 0.03866). (2) Compared with healthy pregnant women, GD patients had an excessive increase in Streptococcus abundance and decrease in Roseburia abundance. The increase in Blautia abundance and the decrease in Phascolarctobacterium and Lachnoclostridium abundance in GD patients were less than those in healthy pregnant women. (3) The abundance of Faecalibacterium prausnitzii decreased significantly in GD patients (PGD = 0.02985) but not in healthy pregnant patients (Pnormal = 0.1643). CONCLUSIONS: Abnormal increases and decreases in the abundances of gut microbiota components, especially Faecalibacterium prausnitzii, were observed in GD patients. TRIAL REGISTRATION: The cross-sectional research was conducted in accordance with the Declaration of Helsinki, and approved by Sir Run Run Shaw Hospital Clinical Trials and Biomedical Ethics Committee. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR1900026164, 24/09/2019, http://www.chictr.org.cn/showproj.aspx?proj=43,455 ).


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Femenino , Humanos , Embarazo , Estudios Transversales , Diabetes Gestacional/microbiología , Heces/microbiología , ARN Ribosómico 16S/genética
18.
Mikrochim Acta ; 191(5): 255, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594377

RESUMEN

Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.


Asunto(s)
Alphaproteobacteria , Compuestos de Calcio , Enfermedades Cardiovasculares , Aprendizaje Profundo , Micromonosporaceae , Óxidos , Puntos Cuánticos , Titanio , Humanos , ARN Ribosómico 16S/genética , Enfermedades Cardiovasculares/diagnóstico
19.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 360-362, 2024 Apr 12.
Artículo en Chino | MEDLINE | ID: mdl-38599813

RESUMEN

Here, we reported the diagnosis and treatment of a case of HIV infected person complicated by an extremely rare infection with Mycobacterium celatum. Due to the similarity of homologous sequence regions between Mycobacterium celatum and Mycobacterium tuberculosis complex, the identification of conventional Mycobacterium species was incorrect, which was corrected after first-generation 16S rRNA sequencing. This report aimed to improve the clinical understanding of Mycobacterium celatum infection and the level of differential diagnosis between non-tuberculous mycobacterial disease and tuberculosis.


Asunto(s)
Infecciones por VIH , Infecciones por Mycobacterium , Mycobacterium , Humanos , ARN Ribosómico 16S/genética , Mycobacterium/genética , Infecciones por Mycobacterium/diagnóstico , Infecciones por Mycobacterium/microbiología , Micobacterias no Tuberculosas/genética , Infecciones por VIH/complicaciones
20.
Artículo en Inglés | MEDLINE | ID: mdl-38639738

RESUMEN

A novel strain, MA3_2.13T, was isolated from deep-sea sediment of Madeira Archipelago, Portugal, and characterized using a polyphasic approach. This strain produced dark brown soluble pigments, bronwish black substrate mycelia and an aerial mycelium with yellowish white spores, when grown on GYM 50SW agar. The main respiratory quinones were MK-10(H4), MK-10(H6) and MK-10(H8). Diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two glycophospholipids were identified as the main phospholipids. The major cellular fatty acids were iso-C16 : 1, iso-C16 : 0, anteiso-C17 : 1 and anteiso-C17 : 0. Phylogenetic analyses based on 16S rRNA gene showed that strain MA3_2.13T is a member of the genus Streptomyces and was most closely related to Streptomyces triticirhizae NEAU-YY642T (NR_180032.1; 16S rRNA gene similarity 97.9 %), Streptomyces sedi YIM 65188T (NR_044582.1; 16S rRNA gene similarity 97.4 %), Streptomyces mimosae 3MP-10T (NR_170412.1; 16S rRNA gene similarity 97.3 %) and Streptomyces zhaozhouensis NEAU-LZS-5T (NR_133874.1; 16S rRNA gene similarity 97.0 %). Genome pairwise comparisons with closest related type strains retrieved values below the threshold for species delineation suggesting that strain MA3_2.13T represents a new branch within the genus Streptomyces. Based on these results, strain MA3_2.13T (=DSM 115980T=LMG 33094T) is proposed as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces profundus sp. nov. is proposed.


Asunto(s)
Ácidos Grasos , Streptomyces , Ácidos Grasos/química , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S/genética , Portugal , Microbiología del Suelo , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Fosfolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...